65.9K
CodeProject 正在变化。 阅读更多。
Home

C# 实现 Douglas-Peucker 线近似算法

starIconstarIconstarIconstarIcon
emptyStarIcon
starIcon

4.73/5 (23投票s)

2007年5月25日

MIT
viewsIcon

165710

downloadIcon

3571

DP 线路逼近算法是一种众所周知的逼近二维线的方法。它速度很快,对于 n 点线来说是 O(nlog_2(n)),并且可以显著压缩数据曲线。这里提供了一个完全面向对象的实现。

引言

我找到了许多 Douglas-Peucker 算法的实现,但没有使用 .NET 语言,所以我决定将其移植过来。Jonathan de Halleux 有一个精彩的解释 在这里

背景

我需要根据缩放级别来减小多边形的大小以便在地图上显示。

Using the Code

包含的代码是完整的,应该可以在 Visual Studio 2005 中直接运行。如果不能,请告诉我。

/// <summary>
/// Uses the Douglas Peucker algorithm to reduce the number of points.
/// </summary>
/// <param name="Points">The points.</param>
/// <param name="Tolerance">The tolerance.</param>
/// <returns></returns>
public static List<Point> DouglasPeuckerReduction
    (List<Point> Points, Double Tolerance)
{
    if (Points == null || Points.Count < 3)
    return Points;

    Int32 firstPoint = 0;
    Int32 lastPoint = Points.Count - 1;
    List<Int32> pointIndexsToKeep = new List<Int32>();

    //Add the first and last index to the keepers
    pointIndexsToKeep.Add(firstPoint);
    pointIndexsToKeep.Add(lastPoint);

    //The first and the last point cannot be the same
    while (Points[firstPoint].Equals(Points[lastPoint]))
    {
        lastPoint--;
    }

    DouglasPeuckerReduction(Points, firstPoint, lastPoint, 
    Tolerance, ref pointIndexsToKeep);

    List<Point> returnPoints = new List<Point>();
    pointIndexsToKeep.Sort();
    foreach (Int32 index in pointIndexsToKeep)
    {
        returnPoints.Add(Points[index]);
    }

    return returnPoints;
}
    
/// <summary>
/// Douglases the peucker reduction.
/// </summary>
/// <param name="points">The points.</param>
/// <param name="firstPoint">The first point.</param>
/// <param name="lastPoint">The last point.</param>
/// <param name="tolerance">The tolerance.</param>
/// <param name="pointIndexsToKeep">The point index to keep.</param>
private static void DouglasPeuckerReduction(List<Point> 
    points, Int32 firstPoint, Int32 lastPoint, Double tolerance, 
    ref List<Int32> pointIndexsToKeep)
{
    Double maxDistance = 0;
    Int32 indexFarthest = 0;
    
    for (Int32 index = firstPoint; index < lastPoint; index++)
    {
        Double distance = PerpendicularDistance
            (points[firstPoint], points[lastPoint], points[index]);
        if (distance > maxDistance)
        {
            maxDistance = distance;
            indexFarthest = index;
        }
    }

    if (maxDistance > tolerance && indexFarthest != 0)
    {
        //Add the largest point that exceeds the tolerance
        pointIndexsToKeep.Add(indexFarthest);
    
        DouglasPeuckerReduction(points, firstPoint, 
        indexFarthest, tolerance, ref pointIndexsToKeep);
        DouglasPeuckerReduction(points, indexFarthest, 
        lastPoint, tolerance, ref pointIndexsToKeep);
    }
}

/// <summary>
/// The distance of a point from a line made from point1 and point2.
/// </summary>
/// <param name="pt1">The PT1.</param>
/// <param name="pt2">The PT2.</param>
/// <param name="p">The p.</param>
/// <returns></returns>
public static Double PerpendicularDistance
    (Point Point1, Point Point2, Point Point)
{
    //Area = |(1/2)(x1y2 + x2y3 + x3y1 - x2y1 - x3y2 - x1y3)|   *Area of triangle
    //Base = v((x1-x2)²+(x1-x2)²)                               *Base of Triangle*
    //Area = .5*Base*H                                          *Solve for height
    //Height = Area/.5/Base

    Double area = Math.Abs(.5 * (Point1.X * Point2.Y + Point2.X * 
    Point.Y + Point.X * Point1.Y - Point2.X * Point1.Y - Point.X * 
    Point2.Y - Point1.X * Point.Y));
    Double bottom = Math.Sqrt(Math.Pow(Point1.X - Point2.X, 2) + 
    Math.Pow(Point1.Y - Point2.Y, 2));
    Double height = area / bottom * 2;

    return height;
    
    //Another option
    //Double A = Point.X - Point1.X;
    //Double B = Point.Y - Point1.Y;
    //Double C = Point2.X - Point1.X;
    //Double D = Point2.Y - Point1.Y;
    
    //Double dot = A * C + B * D;
    //Double len_sq = C * C + D * D;
    //Double param = dot / len_sq;
    
    //Double xx, yy;
    
    //if (param < 0)
    //{
    //    xx = Point1.X;
    //    yy = Point1.Y;
    //}
    //else if (param > 1)
    //{
    //    xx = Point2.X;
    //    yy = Point2.Y;
    //}
    //else
    //{
    //    xx = Point1.X + param * C;
    //    yy = Point1.Y + param * D;
    //}
    
    //Double d = DistanceBetweenOn2DPlane(Point, new Point(xx, yy));
}

关注点

代码并不复杂。移植这个算法很有趣,因为我感觉现在所做的就是帮助企业解决他们无法达成共识的业务问题。

历史

  • Beta 1
© . All rights reserved.